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This paper presents the development of the free convection boundary layer flow of a viscous and incompress-
ible fluid past an impulsively started semi-infinite vertical cylinder with uniform heat and mass fluxes and
chemically reactive species. The governing coupled nonlinear partial differential equations have been solved
numerically using the finite-difference scheme of Crank–Nicolson type. Graphical results for the velocity, tem-
perature, concentration, local and average skin friction, Nusselt number and Sherwood number profiles are il-
lustrated and discussed for various physical parametric values. It is noted that due to the presence of
first-order chemical reaction the velocity decreases with increasing values of the chemical reaction parameter.

1. Introduction. Many transport processes exist in nature and in industrial applications in which simultaneous
heat and mass transfer occurs as a result of combined buoyancy effects of thermal diffusion and diffusion of chemical
species. The effects of mass transfer on flow past an impulsively started infinite vertical plate under constant heat flux
condition along with chemical reactions were studied by Das et al. [1]. Exact solutions were derived by the Laplace
transform technique. The authors observed that the skin friction is positive at large values of the chemical reaction pa-
rameter. It is applicable in chemical processing industries such as food processing and polymer production.

Several investigators studied the flow past a semi-infinite vertical cylinder. Yang [2] made a study of unsteady
laminar free convection on vertical plates and cylinders to establish necessary and sufficient conditions under which
similarity solutions are possible. On the basis of these conditions, all possible cases are derived, including those for
unsteady conditions. Bottemanne [3] had studied such a problem for steady heat and mass flux conditions, both experi-
mentally and theoretically. Chen and Yuh [4] dealt with steady combined heat and mass transfer effects for both con-
ditions of uniform wall temperature/concentration and uniform heat/mass flux. Recently Heckel et al. [5] studied the
steady free convection along slender vertical cylinders for variable surface heat flux conditions. Chen [6] investigated
the steady free convection from a vertical needle with variable wall heat flux and found that there was a significant
influence of its shape, size, and wall temperature variation upon the flow and heat transfer. Pop et al. [7] have studied
the problem of a steady forced convection boundary layer of non-Newtonian fluids on a continuously moving cylinder.

In many industrial and environmental situations, transients do not start from quiescence, but from a previous
heating and resulting flow condition. A solar collector panel is an example, when solar insulation suddenly changes,
possibly due to changing cloud cover. An initial steady flow becomes a transient, which ultimately may result in an-
other steady flow condition, as in the models of Ingham [8], Joshi and Gebhart [9], and Harris et al. [10, 11]. Several
authors have analyzed laminar boundary-layer natural convection with uniform wall heat flux. Nagendra et al. [12] car-
ried out a numerical study of steady boundary-layer equations for cylinders subjected to uniform heat flux and com-
pared their predictions with the experimental results of their earlier study in water. Chambre and Young [13] had
analyzed the problem of first-order chemical reactions in the neighborhood of a flat plate for destructive and generative
reactions. In nature, pure air and water are not possible, since some foreign masses may be mixed with air and water.
Takhar et al. [14] studied the combined heat and mass transfer along a moving cylinder with free stream using an im-
plicit finite-difference scheme of Crank–Nicolson type. Ganesan and Loganathan [15] presented the unsteady flow past
a moving semi-infinite vertical cylinder with heat and mass transfer. 
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In the present study, we consider the free convection flow over a vertical cylinder. Here we assume that a
chemically reactive species is emitted from the surface of the cylinder and diffuses into the fluid. The reaction is as-
sumed to take place entirely in the stream. In the present study, the concentration distribution of this particular compo-
nent in the flow field is calculated. No analysis seems to have been presented for transient natural convection along
vertical cylinders under uniform temperature/concentration along with chemical reaction. The main reason for the lack of
study of this problem is due to difficult mathematical and numerical procedures in dealing with the non-similar boundary
layers. The conservation equations of an unsteady laminar boundary layer are first transformed into a dimensionless form
and their solutions are then obtained by an efficient implicit finite-difference scheme of Crank–Nicolson type. 

2. Mathematical Analysis. Consider unsteady, laminar and incompressible viscous flow past a moving semi-
infinite vertical cylinder of radius r0 with uniform heat and mass fluxes. The physical model of the problem is shown
in Fig. 1. Here the x-axis is taken along the axis of the cylinder in the vertically upward direction and the radial co-
ordinate r is taken normal to it. The effect of viscous dissipation is assumed to be negligible. Initially, it is assumed
that the cylinder and the fluid are at the same temperature T∞

′  and also at the same concentration C∞
′ . At t ′ ≥ 0, the

cylinder starts to move in the vertical direction with constant velocity u0. 
A constant heat/mass flux ratio qw

 ⁄ qw
∗  is maintained at the surface of the cylinder. It is also assumed that

there exists a homogeneous first-order chemical reaction between the fluid and species concentration. All physical
properties are assumed to be constant except for the density in the buoyancy term, which is given by the usual
Boussinesq approximation. The governing boundary-layer equations that are based on the balance laws of mass, linear
momentum, and energy for this investigation can be written as
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The appropriate boundary conditions for the velocity, temperature, and concentration are 

Fig. 1. The physical model and coordinate system. 

900



t ′ ≤ 0 :   u = 0 ,   v = 0 ,   T
′
 = T∞

′
 ,   C

′
 = C∞

′
   for  all  x ≥ 0   and  r ≥ r0 ;

t ′ > 0 :   u = u0 ,   v = 0 ,   
∂T

′

∂r
 = − 

qw

k
 ,   

∂C
′

∂r
 = − 

qw
∗

k
   at   r = r0 ;

u = 0 ,   T
′
 = T∞

′
 ,   C

′
 = C∞

′
   at   x = 0   and   r ≥ r0 ;

u → 0 ,   T
′
 → T∞

′
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′
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′
   as   r → ∞ . (5)
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we reduce Eqs. (1)–(4) to the following dimensionless form:
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The corresponding initial and boundary conditions for dimensionless quantities are given by 

t ≤ 0 :   U = 0 ,   V = 0 ,   T = 0 ,   C = 0   for  all   X ≥ 0   and   R ≥ 1 ;

t > 0 :   U = 1 ,   V = 0 ,   
∂T

∂R
 = − 1 ,   

∂C

∂R
 = − 1   at   R = 1 ;

U = 0 ,   T = 0 ,   C = 0   at   X = 0 ;

U → 0 ,   T → 0 ,   C → 0   at   R → ∞ . (11)

3. Numerical Procedure. In order to solve the unsteady, nonlinear coupled equations (7)–(10) under the
boundary conditions (11), an implicit finite-difference scheme of Crank–Nicolson type has been employed. The region

*) The parameters GT and GC are related to thermal and mass Grashof numbers as follows: GT = Gr/Re, GC = GrC/Re,
where Re = u0r0/nυ.
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of integration is considered as a rectangle with sides Xmax = 1.0 and Rmax = 14.0, where Rmax corresponds to R = ∞,
which lies very well outside the momentum, thermal, and concentration boundary layers. Appropriate mesh sizes
∆X = 0.02, ∆R = 0.25, and time step ∆t = 0.01 are considered for the calculations. The finite-difference equations corre-
sponding to Eqs. (7)–(10) are as follows:

Ui,j−1
k+1

 − Ui−1,j−1
k+1

 + Ui,j
k+1

 − Ui−1,j
k+1

 + Ui,j−1
k

 − Ui−1,j−1
k

 + Ui,j
k

 − Ui−1,j
k

4∆X

+ 
Vi,j

k+1
 − Vi,j−1

k+1
 + Vi,j

k
 − Vi,j−1

k

2∆R
 + 

Vi,j
k+1

1 + (j − 1) ∆R
 = 0 ,

(12)

Ui,j
k+1

 − Ui,j
k

∆t
 + 

Ui,j
k

2∆X
 Ui,j

k+1
 − Ui−1,j

k+1
 + Ui,j

k
 − Ui−1,j

k 
  + 

Vi,j
k

4∆R
 Ui,j+1

k+1
 − Ui,j−1

k+1
 + Ui,j+1

k
 − Ui,j−1

k 


= GT 
Ti,j

k+1
 + Ti,j

k

2
 + GC 

Ci,j
k+1

 + Ci,j
k

2
 + 


Ui,j−1

k+1
 − 2Ui,j

k+1
 + Ui,j+1

k+1
 + Ui,j−1

k
 − 2Ui,j

k
 + Ui,j+1

k 


2 (∆R)2

+ 


Ui,j+1

k+1
 − Ui,j−1

k+1
 + Ui,j+1

k
 − Ui,j−1

k 


4 [1 + (j − 1) ∆R] ∆R
 ,

(13)

Ti,j
k+1

 − Ti,j
k

∆t
 + 

Ti,j
k

2∆X
 Ti,j

k+1
 − Ti−1,j

k+1
 + Ti,j

k
 − Ti−1,j

k 
  + 

Vi,j
k

4∆R
 Ti,j+1

k+1
 − Ti,j−1

k+1
 + Ti,j+1

k
 − Ti,j−1

k 


= 


Ti,j−1

k+1
 − 2Ti,j

k+1
 + Ti,j+1

k+1
 + Ti,j−1

k
 − 2Ti,j

k
 + Ti,j+1

k 


2 (∆R)2
 + 


Ti,j+1

k+1
 − Ti,j−1

k+1
 + Ti,j+1

k
 − Ti,j−1

k 


4 [1 + (j − 1) ∆R] ∆R
 ,

(14)

Ci,j
k+1

 − Ci,j
k

∆t
 + 

Ci,j
k

2∆X
 Ci,j

k+1
 − Ci−1,j

k+1
 + Ci,j

k
 − Ci−1,j

k 
  + 

Vi,j
k

4∆R
 Ci,j+1

k+1
 − Ci,j−1

k+1
 + Ci,j+1

k
 − Ci,j−1

k 


= 


Ci,j−1

k+1
 − 2Ci,j

k+1
 + Ci,j+1

k+1
 + Ci,j−1

k
 − 2Ci,j

k
 + Ci,j+1

k 


2 (∆R)2

+ 


Ci,j+1

k+1
 − Ci,j−1

k+1
 + Ci,j+1

k
 − Ci,j−1

k 


4 [1 + (j − 1) ∆R] ∆R
 − 

K

2
 Ci,j

k+1
 + Ci,j

k 
  .

(15)

The thermal boundary condition

∂T

∂R
 = − 1   at   R = 1 

in the finite-difference form is 
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After eliminating Ci,0
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Here i and j designate the grid points along the X- and R-directions respectively and the superscript k desig-
nates a value of time k∆t. During any one-time step, the coefficients Ui,j

k  and Vi,j
k  appearing in Eqs. (12), (13), (18),

and (21) are treated as constants. The values of U, V, T, and C are known at time t = 0 from the initial conditions.
The values of U, V, T, and C at the next time step t = ∆t are calculated as follows. 
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Equation (21) at every internal nodal point on a particular ith level constitutes a tridiagonal system of equa-
tions, which is solved by the Thomas algorithm described by Carnahan et al. [16]. Thus the values of C are known
at every nodal point on a particular ith level at t = ∆t. Similarly the values of T are calculated from Eq. (18). Using
the values of C and T in Eq. (13), values of U are calculated. Then the values of V are calculated explicitly by using
Eq. (12) at every nodal point on a particular ith level at the (n + 1)th time level. Computations are repeated until the
steady state is reached. This process is repeated for various ith levels. Thus, the values of C, T, U, and V are known
at all grid points in the rectangular region at the (n + 1)th time level. The steady-state solution is assumed to have
been reached when the absolute differences between values of velocity U and temperature T as well as concentration
C at two consecutive time steps are less than 10−5 at all grid points. 

After experimenting with a number of mesh sizes, the mesh sizes have been fixed as ∆X = 0.02 and ∆R = 0.2
with time step ∆t = 0.01. In this case, spatial mesh sizes are reduced by 50% in one direction and later in both direc-
tions, and results are compared. It is observed that, when the mesh size is reduced by 50% in the R-direction, the re-
sults differ in the fifth place after the decimal point, while for the mesh sizes reduced by 50% in the X-direction or
in both directions the results are correct to fourth decimal places. Hence, the above mesh sizes have been considered
as appropriate. 

4. Results and Discussion. In order to get a clear insight of the physical problem, numerical results are dis-
played with the help of graphical illustrations. We consider a homogeneous first-order chemical reaction. The diffusing
species either can be destroyed or generated in the homogeneous reaction. The chemical reaction parameter can be ad-
justed to meet these circumstances if one takes (i) K > 0 for a destructive reaction, (ii) K < 0 for a generative reaction,
and (iii) K = 0 for no reaction. Solutions are obtained for various physical parameters such as thermal Grashof number,
mass Grashof number, Prandtl number, chemical reaction parameter, and Schmidt number. 

The steady-state velocity profiles at X = 1.0 for different values of chemical reaction parameter K, Prandtl
number Pr, and Schmidt number Sc are shown in Fig. 2. It is noted that the velocity increases with decreasing values
of Schmidt number, Prandtl number, and chemical reaction parameter. The time required to reach the steady state in-
creases with increasing Schmidt number and chemical reaction parameter. This shows that the contribution of mass dif-
fusion to the buoyancy force increases the maximum velocity significantly. 

Fig. 2. Steady state velocity profiles at X = 1.0 for Pr = 0.71 (solid curves) and
7 (dashed curves): 1) K = −2, Sc = 0.6, and t = 13.35; 2) −0.2, 0.6, and 13.66;
3) 0, 0.6, and 9.99; 4) 0.2, 0.6, and 8.73; 5) 1, 0.6, and 9.43; 6) 0.2, 0.6, and
8.71; 7) 2, 0.6, and 10.41; 8) 1, 0.6, and 7.67; 9) 0.2, 2, and 11.25.
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For the case of K > 0, i.e., for a destructive reaction, increasing values of K leads to a fall in velocity profiles.
For a generative reaction, K < 0, a fall in velocity is also observed for increasing K. This is due to the fact that as
K < 0, the last term in the concentration equation becomes positive and plays a crucial role. The steady-state velocity
profiles for different GT and GC are shown in Fig. 3. It is observed that the velocity increases with GT and GC. 

The transient and steady-state temperature profiles for different values of Prandtl number and chemical reac-
tion parameter are shown in Fig. 4. The effect of Prandtl number is very important in the temperature field. The ther-
mal boundary-layer thickness decreases with increasing Prandtl number. It is observed that the temperature increases
with increasing values of the chemical reaction parameter.

The steady-state concentration profiles for different chemical reaction parameter and Schmidt number are
shown in Fig. 5. The effects of the chemical reaction parameter and Schmidt number are very important in the con-
centration profiles. It is observed that there is a fall in concentration due to increasing values of the chemical reaction
parameter or Schmidt number. This is due to the fact that a larger Sc corresponds to a thinner concentration boundary
layer relative to the momentum boundary layer. This results in a larger concentration gradient on the cylinder. 

The local as well as average skin friction, Nusselt number, and Sherwood number in terms of dimensionless
quantities are given by 

τx = − 
∂U

∂R



 R=1

 ,
(22)

Fig. 3. Steady state velocity profiles at X = 1 for Pr = 0.71, Sc = 0.6, and
K = 0.2: 1) GT = 15, GC = 10, and t = 7.63; 2) 10, 10, and 7.78; 3) 5, 10, and
7.92; 4) 5, 5, and 8,6. 

Fig. 4. Transient and steady state temperature profiles at X = 1 for GT = 2,
GC = 5, Sc = 0.6, Pr = 0.71 (solid curves) and 7 (dashed curves): 1) K = 2 and
t = 10.41; 2) 1 and 9.43; 3) 0.2 and 8.73; 4) 0 and 9.99; 5) −0.2 and 13.66; 6)
−1 and 18.73; 7) −2 and 13.35; 8) −0.2 and 1.2 (temporal maximum); 9) −0.2
and 8.71. 
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Fig. 5. Steady state concentration profiles at X = 1 for GT = 2, GC = 5, and
Pr = 0.71: 1) K = −1, Sc = 0.6, and t = 18.73; 2) −0.2, 0.6, and 13.66; 3) 0, 0.6,
and 9.99; 4) 0.2, 0.6, and 8.73; 5) 1, 0.6, and 9.43; 6) 2, 0.6, and 10.41; 7)
0.2, 2, and 11.25. 

Fig. 6. Local skin friction for GT = GC = 0.5, Pr = 0.71 (solid curves) and 7
(dashed curves): 1) K = 2 and Sc = 0.6; 2) 1 and 0.6; 3) 0.2 and 0.6; 4) 1 and
2; 5) 2 and 0.6; 6) 1 and 0.6; 7) 0.2 and 0.6; 8) 0 and 0.6; 9) −0.2 and 0.6;
10) −2 and 0.6. 
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Fig. 7. Local Nusselt number for Pr = 0.71 and K = 0.2: 1) GT = 10, GC = 10,
and Sc = 0.6; 2) 5, 10, and 0.6; 3) 2, 2, and 0.16; 4) 2, 5, and 0.6; 5) 2, 2,
and 0.6; 6) 2, 5, and 2. 

Fig. 8. Local Sherwood number for Pr = 0.71, GT = 2, and GC = 5: 1) K = 2
and Sc = 2; 2) 2 and 0.2; 3) 2 and 0.6; 4) 1 and 0.6; 5) 0.2 and 0.6; 6) 0 and
0.6; 7) −0.2 and 0.6; 8) −1 and 0.6; 9) −2 and 0.6. 

Fig. 9. Average skin friction for GT = GC = 0.5, Pr = 0.71 (solid curves) and 7
(dashed curves): 1) K = 2 and Sc = 0.6; 2) 1 and 0.6; 3) 0.2 and 0.6; 4) 0.2
and 2; 5) 2 and 0.6; 6) 1 and 0.6; 7) 0.2 and 0.6; 8) −1 and 0.6; 9) −2 and
0.6.

Fig. 10. Average Nusselt number for Pr = 0.71, K = 2: 1) GT = 2, GC = 5, and
Sc = 2; 2) 10, 10, and 0.6; 3) 5, 10, and 0,6; 4) 2, 5, and 0.6; 5) 2, 2, and
0.6; 6) 2, 2, and 0.16. 
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The derivatives involved in Eqs. (22)–(27) are evaluated by a five-point approximation formula and integrals
are evaluated through the use of the Newton–Cotes formula. 

The local skin-friction profiles for different chemical reaction parameters and Schmidt numbers are plotted in
Fig. 6 as functions of axial coordinate X. The local skin friction decreases as X increases. It is noted that the local
shear stress increases with increasing values of the chemical reaction parameter and Schmidt number. The local Nusselt
number for different GT, GC, and Sc are presented in Fig. 7. It is observed that the rate of heat transfer increases with
increasing values of GT or GC. The local Sherwood numbers for different values of Sc and K are shown in Fig. 8 at
steady state. They increase as the axial coordinate and Schmidt number increase. This is due to the fact that for a gen-
erative reaction the rate of mass transfer increases as Sc and the reaction parameter increase but the opposite effect has
been observed for a destructive reaction. 

The average skin friction, Nusselt number, and Sherwood number are shown in Figs. 9–11 respectively as
functions of time at X = 1.0 for various parameters. Figure 9 shows that the shear stress increases with increasing val-
ues of K and Sc. Initially, higher values of the average Nusselt and Sherwood numbers are observed and then they
decrease with time. From Fig. 10 it is observed that the average heat-transfer rate increases for increasing GT, GC, and
Sc. In the initial time steps, the rate of heat transfer is the same for fixed values of Sc. In Fig. 11, the average Sher-
wood number is also the same initially for fixed values of Sc. This shows that there is only mass diffusion in the in-
itial time level. Larger values of K or Sc correspond to higher values of Sherwood numbers. 

5. Conclusions. A numerical study has been carried out for the flow past an impulsively started semi-infinite
isothermal vertical cylinder with constant heat and mass fluxes and diffusion of chemical reactive species. A system of
governing partial differential equations is solved by an implicit finite-difference scheme of Crank–Nicolson type. The
fluids considered in this paper are both air and water. The results are obtained for different values of thermal Grashof
number, mass Grashof number, Schmidt number, and chemical reaction parameter. Conclusions of this study are as fol-
lows: 

1. The time required to reach the steady state increases with increasing Schmidt number Sc. For both genera-
tive and destructive reactions this time increases as the chemical reaction parameter K increases. 

2. The momentum boundary layer increases with decreasing values of Sc and Pr. It is observed that there is
a rise in the velocity due to the presence of mass diffusion. 

3. The thermal boundary-layer thickness increases with decreasing value of K. 

Fig. 11. Average Sherwood number for Pr = 0.71, GT = 2,  and GC = 5: 1)
K = 2 and Sc = 2; 2) 0.2 and 2; 3) 2 and 0.6; 4) 1 and 0.6; 5) 0.2 and 0.6; 6)
0 and 0.6; 7) −0.2 and 0.6; 8) −1 and 0.6; 9) −2 and 0.6. 
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4. For both generative and destructive reactions, temperature increases, but the velocity and concentration de-
crease with increasing chemical reaction parameter.

The authors wish to acknowledge support for this research work from the CSIR (Council of Scientific and In-
dustrial Research) through the award of Senior Research Fellowship to the second author. 

NOTATION 

C′, species concentration; C, dimensionless species concentration; D, binary diffusion coefficient; Gr, thermal
Grashof number; GrC, mass Grashof number; g, acceleration due to gravity; K, chemical reaction parameter; Kl, dimen-
sional chemical reaction parameter; k, thermal conductivity; qw, heat flux; qw

∗ , mass flux of the diffusing species; Nu
___

,
average Nusselt number; Nux, local Nusselt number; Pr, Prandtl number; R, dimensionless radial coordinate; r, radial
coordinate; r0, radius of cylinder; Sc, Schmidt number; Sh

___
, average Sherwood number; Shx, local Sherwood number; T′,

temperature; T, dimensionless temperature; t ′, time; t, dimensionless time; U and V, dimensionless velocity components
in X and R directions respectively; u and v, velocity components in x and r directions respectively; x, axial coordinate
measured vertically; X, dimensionless axial coordinate; α, thermal diffusivity; β, volumetric coefficient of thermal expan-
sion; β∗ , volumetric coefficient of expansion with concentration; υ, kinematic viscosity; ρ, density; τx, local skin friction;
τ
_
, average skin friction. Subscripts: w, wall;  ∞, the free stream condition. Superscripts: k, time step level.
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